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Abstract

Modeling and control for axial flow compression systems have received great attention in
recent years. The objectives are to suppress rotating stall and surge, to extend the stable
operating range of the compressor system, and/or to enlarge domains of attraction of stable
equilibria using feedback control methods. The success of this research field will significantly
improve compressor efficiency and thus future aeroengine performance. This paper surveys
the research literature and summarizes the major developments in this active research field,
focusing on the modeling and control perspectives for rotating stall and surge in axial flow
compressors.

1 Introduction

Compressor rotating stall and surge are primary design constraints which effectively reduce engine
performance. These are instabilities that arise in the unsteady fluid dynamics. One reason that
these unsteady aerodynamic instabilities can lead to large penalties in performance is that they are
difficult to predict accurately during design. Feedback control has to be employed to suppress the
rotating stall and surge in order to extend the stable operating range and/or to enlarge domains
of attraction of stable equilibria for compressor systems and to improve the engine performance.

There were three important developments in this active research field in the past decade. The
first was the low-order nonlinear state-space model developed by Moore and Greitzer [29] that
captures the nonlinear dynamics of the compressor system through its bifurcation characteristic
[4, 28]. The application of classical nonlinear dynamics to rotating stall and surge dynamics
motivated the second important development: a simplified approach to rotating stall and surge
control based on bifurcation theory. This idea was developed by Abed and his coworkers [2, 4]

*This work was supported in part by AFOSR Summer Faculty Research Program and by AFOSR under contract
no. F49620-94-1-0415DEPSCoR, and was partially carried out in WL/FIGC of WPAFB.
§ Department of Electrical and Computer Engineering, Louisiana State University, Baton Rouge, LA 70803-5901.
1 Flight Dynamics Directorate, Wright Laboratory, Wright-Patterson Air Force Base, Ohio, 45433-6553.




and was shown to be effective for implementation in industrial turbomachinery by Nett and his
group [13, 14]. Another important development was the linear control method pursued by the
MIT group [12, 31, 15]. This survey paper will focus on these three developments on modeling
and control of rotating stall and surge in axial flow compressors. Due to space limitations, many
details, such as derivation of the nonlinear differential equations and bifurcation diagrams, are
omitted, but the related literature is cited. It is hoped that this survey paper will stimulate
research interests from the control community in the area of rotating stall and surge control for

COMPressors.

2 Rotating Stall and Surge in Axial Flow Compressors

Axial flow compressors are subject to two distinct aerodynamic instabilities, rotating stall and
surge, which can severely limit the compressor performance. Both these instabilities are disruption
of the normal operating condition which is designed for steady and axisymmetric flow. The
transition from normal compressor operation into rotating stall is depicted in Figure 1 where ®
is the circumferential mean of the flow coefficient ¢, and ¥ is the nondimensionalized pressure
rise. As the flow coefficient through the compressor is decreased (i.e., as the downstream throttle
closes in an experiment), the pressure rise increases. This trend continues until the system goes

into either rotating stall, surge (deep surge), or both (classic surge).
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Figure 2: Schematic of compressor characteristic, showing rotating stall

For the case of rotating stall, the lowest flow coefficient at which the compressor can operate
with axisymmetric flow is point A, the peak of the characteristic. At lower flows, an abrupt
transition occurs into rotating stall (point B). There is a substantial drop in pressure rise and a
decrease in flow coefficient (segment A-B). This condition will persist until the flow is increased
to point C'. Thus there exists a severe ‘hysteresis’, or range of flow coefficients at which two stable
operating conditions exist — steady axisymmetric flow and rotating stall. Once a compressor

enters fully developed rotating stall, both rotor and stator blades pass in and out of the stalled




flow causing tremendous stress. Any substantial length of time in this mode can result in excessive
internal temperatures due to low efficiency associated with the presence of rotating stall. In
addition, an even more serious consequence that can occur in an engine is that the low flow rates
obtained during rotating stall can lead to substantial overtemperatures in the burner and turbine
[17]. At present, the only remedy to get out of rotating stall is to shut down the engine and
restart it again [29).

Rotating stall is a severely non-axisymmetric distribution of axial flow velocity, though steady
in an appropriate (moving) reference frame, around the annulus of the compressor, taking the
form of a wave or ‘stall cell’, that propagates in the circumferential direction at a fraction of
the rotor speed. Surge, on the other hand, is an axisymmetric oscillation of the mass flow along
the axial length of the compressor. Deep surge is a mostly axisymmetric oscillation with such
a large variation of mass flow that during part of the cycle the compressor operates in reversed
flow. The frequency of the surge oscillation is typically an order (or more) of magnitude less than
that associated with the passage of rotating stall cells. If surge occurs, the transient consequences
such as large inlet overpressures can also be severe. However the circumstances may well be more
favorable for returning to unstalled operation by opening either the throttle or internal bleed
valves, since the compressor can operate in an unstalled condition over part of each surge cycle.
Often surge and rotating stall are coupled (classic surge) although each can occur without the
other. For the case of classic surge, the compressor may pass in and out of rotating stall during
a surge cycle, with rotating stall characteristics appearing to be quite similar to those obtained
during steady-state operation. Thus rotating stall and surge, though coupled, are well defined
enough that each can be studied alone for low speed axial flow compressors [31].

Rotating stall and surge are mostly caused by disturbances. Those having largest and most
destabilizing effects are: circumferential distortion, planar turbulence, and combustion [22]. All
of these types of disturbances present in full-scale aeroengines and are major sources of rotating
stall and surge.

o Clircumferential distortion refers to non-axisymmetric flow patterns that are generated by
upstream structures such as bends in inlet duct or boundary layer separation caused by high
angle of attack at the engine inlet. The inlet distortion can also be correlated with aircraft

angle of attack and yaw angle.

o Planar turbulence refers to axisymmetric oscillations in the flow field that are generated,
for example, by inlet buzz or ingestion of wakes from nose gear or other aircraft. Planar
turbulence is an inherently unsteady flow and has been recognized as an important source

of loss in stall margin.

o Combustion process introduces large unsteady back-pressure disturbances to the compres-

sion system causing steady state operating conditions to exhibit fluctuations in pressure and

mass flow large enough to cause the system to diverge.




Thus substantial rotating stall and surge margins are required in the selection of a compres-
sor operating point in order to maintain steady axisymmetric flow. Consequently, compression
systems are forced to operate with far less performance operating point than point A, the peak of
the compressor characteristic (Figure 1). Even then, with all the above mentioned disturbances
present in the worst case, it does not seem possible for the compressor to escape rotating stall

and surge unless some control action is taken.

3 Moore-Greitzer Model

Modeling the nonlinear behavior of rotating stall and surge in axial flow compressors has been
pursued for about two decades. Greitzer is clearly a pioneer [17, 18]. Although there are many
models for rotating stall and surge, the nonlinear model developed by Moore and Greitzer [29]
dominates the recent study on rotating stall and surge control because it is a low-order state-space
model and it captures the nonlinear features of rotating stall and surge. This section gives a brief

review to Moore-Greitzer model with modifications in [2, 28].
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Figure 1: Schematic of compressor showing nondimensionalized lengths

The basic compression system is shown in Figure 2 [29] where Pr is the total pressure upstream
of the compressor and Pg the static pressure in the plenum. The flow is assumed to be incom-
pressible in the compressor, though the gas in the plenum is compressible. It is further assumed
that the flow is irrotational having no radial variation as it proceeds from an upstream reservoir
through the entrance duct to the inlet guide vane entrance at station 0. Such assumptions hold
for low speed compressors with high hub-to-tip ratio. The local flow coefficient at station 0 is
denoted by ¢(&,0) with £ the time nondimensionalized by the rotor speed, and 8 the wheel angle.
The circumferential mean of the flow coefficient at station 0 is denoted by ®(£) and is given by

_ %; /0 T O(E,0) dB, B(E,8) = B(E) + wolE, 0),




where @0 = ¢(£,60,0) with ¢(£,6,7) the flow disturbance. The symbol 7 denotes the nondi-
mensionalized axial distance that is negative or positive on the left or right of the station 0

respectively. The assumptions on the gas flow imply the existence of a disturbance potential
®(&,6,1) that satisfies Laplace’s equation

T =0, (1)

The boundary condition is taken as [28]

0¢

—(&,6,-1;) =0. 2

377 (6 y T¢I ) ( )
Thus the momentum equation is given by [29]
d<I> B Qg?
d€
where y > 0 is the gas viscosity introduced by [2 ], I the total aerodynamic length of the compres-
sor and duct, A the exit duct length factor, and ¥ = (Ps — Pr)/(pU?) the pressure rise coefficient

with p the gas density and U the wheel speed at the mean radius. For the uniform and steady
flow, 1 = 4., the compressor characteristic curve given by [29]

¢C(¢)=¢60+H[1+g(%—1)—%(%—1)3]- (4)

V= 9e(¢) -
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For the continuity equation, the isentropic assumption in [29] gives

mc—mT:@:_l_d(Ps—Pg) (5)
Vp dt a2 dt

where V), is the volume of the plenum (the gas is compressible inside plenum), a; is the speed of

the sound, and 72, the incoming and rr the outgoing mass flow rates respectively. It follows that

av U Vi

—, B:= L (6)

d¢ 2a5 \| A.L.

with ¥ the circumferential mean of , A, the compressor duct area, and L., the physical dimension

of [.. By assuming parabolic throttle characteristic, (6) is equivalent to

zc% = 17 (@ = 81(0) = 1> (&~ (W), ¥ = Fr(er) = LK%, (7)

An important step in the derivation of Moore-Greitzer model is the projection of the PDE
(3) to ODE. This is accomplished through the use of the spatial harmonic form for disturbance
velocity potential [28, 2]:

N
= 3 (@ + an(§)emi) (enlrthn) 1 e=notin) |y < g, (8)

n=1

!PDE stands for partial differential equation and ODE for ordinary differential equation.




because ¢ satisfies Laplace’s equation (1) with boundary condition (2). Note that {a,} is defined
as the SFC (spatial Fourier coefficient) at station 0, or p = 0. The number N is dependent on pu.
For =0, N = 00, and for u > 0, N is finite [2]. Tt follows that

N
©o = Z Pon, Pon = WAR(E)sin(n — r,.), A, = 4n|a,|sinh(nl;)/W, 9)

n=1

with 7, a constant by assuming constant speed of the nth harmonic disturbance flow, i.e., constant

wave speed. Moore-Greitzer model is now given by

- WAL o]t
% = [—w—;fﬁ+l+g<%—l)(1—%,])——;—(%—1)3}%, (11)
T = ([ () - ] ) (1 ey

where J, = A2 and J = Y, J,. Equation (10) is the same as (7). Equation (11) is obtained by
substituting the harmonic form of ¢ into (3) and integrating over a period of 2. Equation (12)
is obtained by the same procedure, but multiplied by sin(nf — r,£) before integration. If instead,
cos(nfl — r,€) is multiplied before integration, then it can be verified that the wave speed is given
by 7o = n/(2[1 4 aX cosh(nl;)/ sinh(nl;)]).

It is noted that the third order nonlinear state-space model in (10)-(12) includes the models
in [29, 2, 28] as special cases. Indeed, by taking n = N = 1 and # =0, the model used in [28] is
obtained. On the other hand, by taking I; — oo, the model used in [2] is obtained. If n = N =1,
p =0, and I; — oo are all true, then the original Moore-Greitzer model in [29] is recovered.
The third order ODEs in (10)-(12) can also be expanded into (N + 2)th order ODEs by taking
n =1,2,...,,N for (12). On the other hand, if sin and cos forms are used in (8), then the third
order ODE can be expanded into (2N + 1)th order ODE by either taking high order harmonics
[2, 3] or by sampling the spatial variable 6 uniformly [26]. Thus a much more accurate nonlinear
state-space model can be obtained.

For axisymmetric and steady flow, J = 0. Thus (11) reduces to & = [T + 9.(®)] /I.. Simple
calculation shows that linearization about ® = &, < 2W is unstable for some physical parameters
due to the positive slope of 1.(®), thus rapidly developed into either rotating stall, or surge, or
both.

For the case of pure rotating stall, time derivatives in (10)-(12) must vanish (the flow is steady
but non-axisymmetric for rotating stall). Equation (12) then requires that J either vanish or have
the constant “equilibrium” value

;8 [d¢c(¢>) n2} :4[1_ (2_1>2_’un2W]'

T 3H | dp  Hog




Thus pure rotating stall wave occurs not at the peak (point A of Figure 1 at which &, = 2W) for
# > 0. Rather it is slightly on the left of point A as y is small. This is due to the damping effect
of the viscosity [2]. Note that pure rotating wave is non-axisymmetric but steady. It travels at
constant speed circumferentially. Tt is also interesting to observe that in order for J. > 0, it is
necessary for @ to satisfy either

2 2
W<®< (1+\/1—Mgagf’m or (1—,/1-,;%'1413@314/.

A moment of reflection reveals that n <N < /3aH/uW that is finite for # > 0 [2]. When the
value of J, is substituted into the right hand side of (11), it gives

= [~V + (@) /Lo, (@) = tho + [1 - (g - uv:g) (% ~ 1) + g (5’7 - 1>3J . (13)

The transition from axisymmetric operating point to pure rotating stall is fast because of the
instability that corresponds to the A-B path on Figure 1. It is interesting to observe that ()
has a negative slope for 0 < @ < (18 — un?W)/15, while Ye(®) has a positive slope. Thus pure
rotating stall at small & is a stable operating point although it is not permissible due to the
physical constraint. If the throttle increases, the axisymmetric and steady flow is not recovered
along the path A4-B. Instead, it moves along the path B-C (governed by the cubic curve s, instead
of 1) until it reaches the segment of positive slope corresponding to the unstable operating range
(specifically & > (18— pn*W)/15) for certain physical parameters. It then rapidly settles into the
axisymmetric and steady flow at point D. Hence Moore-Greitzer model captures the nonlinear
behavior of rotating stall and explains the so called “hysteresis” in Figure 1.

For the case of pure surge, J = J = 0. The dynamics is governed by (10) and (11) with
J = 0. The linearized system may have eigenvalues on either imaginary axis or strictly right half
plane. In this case the disturbance wave is axisymmetric but unsteady (deep surge), and can be
considered as zeroth mode for the disturbance in (8). A general situation is clearly when rotating

stall and surge are coupled. It is emphasized that all these Cases are captured by Moore-Greitzer
model.

4 Bifurcation Analysis and Nonlinear Control

Moore-Greitzer model predicts the existence of small amplitude disturbance before developing
into full rotating stall and surge [29], and it is experimentally validated at MIT [16]. These devel-
opments greatly stimulated research interest in employing feedback control methods to suppress
the rotating stall and surge when the disturbance has small amplitude. It should be clear that
once the compressor runs into fully developed rotating stall, tremendous power is required to
get the compressor out of the stall, and active control at this stage is not realistic. Although a

linear control method was first suggested in [12], a more profound progress is the use of classic




nonlinear bifurcation analysis and the resulting nonlinear control law for Moore-Greitzer model
2,3, 4, 7, 13, 14, 25, 27, 28, 35]. This work was initiated by Abed and his group, and aided by

McCaughan [27, 28] who gave a more complete bifurcation analysis. The following changes of

variables are used: ) ® . I .
J:ZJ’QZW—LIII:—E,gzmé (14)

For simplicity, N = 1is used (Galerkin procedure [29]). Denoting 8 = 2BH /W, o5 = pn*Woy/(3aH),

and oy = 3al./(1 + aX cosh(l1)/nsinh(lr)), (10) — (12) are converted into [28]

i = ﬂ—lz (8- 8r(D)), d2(8) =¥ -1, 5= \2H/E7 /W, (15)
~0 +0,(8)-38J, (16)
o1 (1 — % f) — oy, (17)

Wy R
1 Il

where the derivatives on the left hand side are with respect to £, and ¥, = beo + 1+ %({3 - %(;’33,
$eo = oo/ H. Linearizing (15) — (17) about an equilibrium point (&, ¥., J,) gives

7 . —B25(8,)  p 0
| =L | -3, |, L= -1 0(®,) - 3J, -39,
j j — je 0 —201<i>eJ~e o] (1 - (ig - 2fe) — 02

(18)
For 1 = 0, the study in [28] shows that 1.0 = 4 is an interesting value. At large values of v
(that is proportional to the cross-sectional area of the throttle), the flow is axisymmetric and
steady. Decreasing the value of y corresponds to reducing the mass flow and causes the flow
to loss stability either at the transcritical bifurcation point (for Yoo < 4 or Deo > 4), or at the
pitchfork bifurcation point (for Vo = 4). The value of v at which the transcritical bifurcation or
pitchfork bifurcation occurs is denoted by .. Clearly the flow corresponding to J, = 0 is stable
whenever v > 7, but unstable for v < .. If J, > 0, a saddle node bifurcation occurs for the
case e < 4 at ¥s > 7. for which the flow has two branches with one stable if v increases and
the other unstable if v decreases in the interval of [7,, 7,] although the flow corresponding to
Je = 0 is stable. The bifurcation analysis in [28] gives us a deeper understanding on the hysteresis
loop shown in Figure 1. If the flow is initially axisymmetric and steady (i.e., Jo = 0), and v
decreases to the value close to 7., the matrix L in (18) has a pair of complex eigenvalues and one
real eigenvalue, all lie strictly on the left half plane. As v decreases further, the real eigenvalue
changes its sign at either the transcritical or pitchfork bifurcation point and J., = 0 loses its
stability. Any non-axisymmetric disturbance flow will perturb the compression system to stalled
flow: Jo > 0. In this case, increasing v value does not return the compressor to the axisymmetric
flow. Rather, the stalled flow will persist until it reaches to the saddle node bifurcation point at
Y = 7s > 7. The exchange of the stability for the flows corresponding to J. = 0 and J, > 0 at

Y € [7e, 7s) constitutes the hysteresis loop shown in Figure 1. Thus bifurcation analysis gives a




different view on the hysteresis loop and, more importantly, relates it to the parameter v, that can
be used as an actuator through controlling the bleed valves in compression systems (35, 13, 14].

If the v value decreases further from v = 1, the pair of complex eigenvalues of L, will also
migrate to the right half plane resulting in Hopf bifurcation. As indicated in (28], the Hopf
bifurcation is also related to the parameter B, or the B parameter. When J, = 0, the stability of
the axisymmetric flow is determined by the reduced second ODE that has a linearized operator
av, _, &p

U (3, -1
Loy = c(®e) Y f = —-. (19)

|, =
2 —pen(Y,)

The Hopf bifurcation occurs (that is when L., has a pair of imaginary eigenvalue)

t

e) _ 1

— " 2 _
ﬂ - ﬁHBr(7,¢c0)a ﬁHBr = e) = 3&;(1 ~ @e).

(0
U (o
Because ®4(¥) > 0 for all ¥ > 0, the Hopf bifurcation occurs only when ¥, or equivalently
¥e(®), has a positive slope and when v < 7Ye- Moreover the Hopf bifurcations are all supercritical,
giving rise to axisymmetric periodic orbits [28]. Using the results on the enforced Van der Pol
equation (see also [18]), McCaughan was able to conclude that if 3 is close B Br, the limit cycle is
unstable and a rotating stall disturbance tends to be amplified, and as § increases from Sgg,, the
limit cycle grows rapidly and a nonaxisymmetric disturbance tends to be heavily damped, and
thus the axisymmetric flow becomes stable, though unsteady. The later situation is associated
with deep surge.

When J. > 0 appears at either the saddle node (v = 7s, beo < 4) or the transcritical
bifurcation (7 = 7., Yoo > 4), the Hopf bifurcation occurs at 3 = Sy when the matrix L, has
a pair of imaginary eigenvalues and a real eigenvalue. For 8 < BuB, the fixed point J. > 0 is
completely stable and that implies rotating stall solution for the compression system. However
if e is approximately smaller than 2.07, the bifurcations are always subcritical regardless of
the value of ; hence the limit cycle born at the Hopf bifurcation is unstable. When 9 is
approximately greater than 2.07, the Hopf bifurcation is at first supercritical, and then becomes
subcritical as 4 is decreased. Since the third eigenvalue is stable, a supercritical Hopf bifurcation
implies a completely stable limit cycle. The bifurcation analysis is consistent with the conclusion
in [29]: large B parameter (thus large 3 value) favors surge while small B parameter (thus small 3
value) favors rotating stall. Thus B parameter is important in determining the nonlinear dynamics
of the compression system [17, 18, 29, 13].

Rather than continuing further with the bifurcation analysis as in [28] or as in (2, 4] for the
case i > 0, we turn our attention to the nonlinear control method developed initially in [3, 25, 35]
and implemented in [13, 14] that is based on bifurcation characteristic of the compression system.
Suppose that the nonlinear model described in (10)-(12) is linearized at A, = 0, ¥ = ¥,, and




® = @, (axisymmetric steady flow). Then the linearized system has the form

] b- 7, —B284(B,) B2 0
& |=Lo| &-8, |, Lyo= -1 (d,) 0 . (20)
Al Al 0 0 gy (1 — &)g) — 09

Thus as discussed earlier, a zero eigenvalue for L.y occurs at 7 = 7. when

$?2=1-2 — @e:(li 1—“W)W.

o1 3aH

It follows that the axisymmetric and steady flow loses stability. Any nonaxisymmetric disturbance
flow will develop into fully stalled flow. That is, the compression system will exhibit a jump from
stable nominal equilibrium when the parameter crosses the critical value 7, that results in a
hysteresis loop of the stable equilibrium. Actually the problem is not the loss of the stability for
the axisymmetric and steady flow but the loss of stabilizability with linear control if the throttle
is used as actuator [35]. Indeed, write 7 = 7Ye+ u With u the control actuating signal. Then (20)
can be converted into the linearized control system of the form # = Fz + Gu with

~B72./\/4%, B2 0 —B72/1/4¥,
F= -1 v (3,) 0 , G= 0 (21)
0 0 o (1-82) -0, 0

Clearly the eigenvalue at the origin is not controllable, and thus a linear control method does
not work. An important result in [35] is the use of nonlinear control of the form u = K A?. Tt is
shown in [35] that with u = K A2, the subcritical pitchfork bifurcation at v = 7, can be made into
supercritical bifurcation whenever ®, # W. The elimination of the subcritical bifurcation removes
the hysteresis loop and stabilizes the bifurcated equilibrium solutions. Tt is emphasized that such
stabilization is not achievable with linear feedback control. This control law was further improved
and successfully implemented in [7, 13, 14] using the measurements on the flow coefficient to
estimate the amplitude of the first order spatial harmonic disturbance.

Very recently, a new result was obtained in [24] where backstepping method in (23] was em-
ployed for nonlinear control of rotating stall and surge. The nonlinear feedback law in [24] has
the form

1 ~ ~ ~ ~ -
Y= 1+¢e+k1 lIf—\Ile +k2 @'—(I)e . 22
71 (F-0.) +5 (2-36.)} (22
It is interesting to see that with the feedback law in (22), the nonlinear equation (15) reduces to
z ki o/~ - 1—ky =2«
v=-a (#-8.)+ o = o) (23)
that is a linear equation. The linearized system has an L. matrix (as defined in (15)):
Le=| -1 -§(1- $?) -3,
0 —20’1¢5 (1 — q)g) —01 (1 — ég) — 09




It can be shown that k; and k; can be chosen such that L, is a stability matrix, and thus the
resulting nonlinear feedback system is locally stable. A more surprising result in [24] is that &,
and ky can be chosen such that the resulting nonlinear feedback system is globally stable. This
result is proven using the back stepping method in [23].

5 Linear Perturbation Model and Feedback Control

Another important development in rotating stall control, motivated by Moore-Greitzer model,
is the linear control method using inlet guide vanes (IGVs) as actuators. It was suggested first
by Epstein, Williams, and Greitzer at MIT [12] to actively damp rotating stall waves at low
amplitude by using linear feedback control. Rotating stall can be viewed as the mature form of
the rotating disturbance. Damping of the wave would prevent rotating stall from developing, thus
stabilizing the flow operating range on the A-B segment (Figure 1). The philosophy is to measure
the wave pattern in a compressor and generate a circumferentially propagating disturbance based
on those measurements, so as to damp the growth of naturally occuring waves. In the particular
implementation described in [31, 32], individual IGVs in upstream are “wiggled” to create the
traveling wave velocity disturbance. The flow that the upstream sensors (measured with hot
wires) and downstream blade rows see is a combination of naturally occuring instability waves
and the imposed control disturbances. As such, the combination of compressor and controller is a
different machine from the original compressor — with different dynamic behavior and different
operating stability. However in pursuing the linear control method to suppress the rotating
stall, it was soon realized that the time lag from the nonaxisymmetric disturbance flow to the
disturbance in pressure rise was not taken into consideration in Moore-Greitzer model. Thus a
linear perturbation model was developed in [12, 30].

Denote the upstream nonaxisymmetric disturbance flow by 5¢upstream that is measured by
hot wire. Denote the nonaxisymmetric disturbance flow at station 0 by 6¢. Then, by assuming
dPupstream = 0 at 7 = —oo (this boundary condition is different from that used in (2)), the
analysis in the previous section gives the following forms of the nonaxisymmetric disturbance at

different stations:

5¢upstream = 5¢upstrea,m(§a 0) = Z an(f)en(n—nh'”)ejne = E ¢n€n(n_nh”’), (24)
n#0 n#0

6¢(€, 0) — Z <Zn(g)e—rmhwejn@ — Z ¢ne—n’l7hw’ (25)
n#0 n#0

o

where 7, denotes the nondimensionalized length from station 0 to the station of the hot wire
sensor. Note that {¢,} and {¢,} are the SFC (spatial Fourier coefficient) at 7 = 7, and =0
respectively, and thus they have the same physical meaning as {a,} in (8). The actuator is the
densely distributed IGVs for which each individual vane has an incidence of v(6), dependent on

11




0. The actuating signal is 6, the variation of the incidence that has a SFC form

b1 =69(6,0)= 3 9u(O)™ = 3 7,(6). (26)
n#0 n#0
The objective is to synthesize 6y as a function of §¢ such that it damps the disturbance and
extends the stable operating range against rotating stall. By ignoring the surge dynamics, and
taking IGV into consideration, the PDE (3) is projected into the following single ODE (with
bn = pnel? and @ constant):

[% + z/t] bn = [%—ﬁc +jn/\J On — Jrv;® [% +v-— -1/2—1} ¥, + [(%%c - n21/1)\¢>> +jn1/1<1>%%] Vs

where v; = v + v7, and parameters of v,vr, A are the inertia of the IGVs and compressor blades
[31, 32]. Note that a different set of parameters from those in (3) is used in [12, 31, 32] and we
have kept their notations for ease of the reference. In particular, v = 1/a and A = 1/2q are used
in Moore-Greitzer model (cf. Section 3). The terms involving 4 and ¥ take care of the time lag
between the disturbance in flow and disturbance in pressure rise. Parametric representation of
the above equation gives the following set of complex-coefficient ODEs:

b = (ors + JWRS) bn + (br + 576:)7n + jgi%, (27)
where, if we let I = (1, + 2/n),

0.
ors(n,®) = (—9%/11, wrs = nA/I,

bo(n,®) = " (%’ﬁc - n21/1>\<1>) /10,

0.
bi(n,®) = e"hupy;d (‘;fb /10,

gi(n,®) = —ehupy;d (1 +v-— %) Jaie
n

Taking state variables and control inputs as

(Ti)n Im(¢,) | (i) Im(%,,)
respectively, it is now straightforward to show that the n-th mode of the SFC for the flow distur-
bance satisfies the state-space equation

i l: (xr)n J - [ ORS —WRS } [ (xr)n :l + [ br _bi J l: (u'r)n J + [ 0 —g; :l l: (ur)n }
d€ | (zi)n WRS ORs (%:)n bi b, (%:)n gi 0 ()n
Clearly the stability of uncontrolled system is hinged to the sign of derivative of 1. with respect

to ¢. A nice feature of the linear perturbation model is the decoupling between different modes
of the SFC, and thus a feedback controller can be synthesized for each mode independently.
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Different system identification methods were employed in [30, 31, 32] to determine the pa-
rameters (ogrs,wrs, br, b;, g;) using open-loop frequency response experiments and least-squares
fitting. Once the plant model is available, a proportional feedback control law of the form

Tn = _knq_sna kn = Re(kn) +JIm(kn)7

is employed to enhance the damping ratio. The control signal dv(¢,0) is generated according to
(26) where the summation is with respect to those modes to be controlled. Clearly this is a state
feedback control law by the definition of state variables in (28). Through experimental trials, the
best values of the magnitude and phase for k, in terms of maximizing the damping ratio, were
obtained, and implemented that achieve the extension of the stable operating range. For using
first mode feedback (n = 1), the flow coeficient at stall were reduced by 11%. When the second
mode (n = 2) was also used for feedback, the stall flow coefficient was reduced by 18% [30, 31, 32].

The work reported in [31, 32] also presented a methodology on how to use the general theory
and algorithms from system identification and control system design for practical engineering
problems. It gave a guideline in the future research work on rotating stall and surge control
using linear control theory. However in comparison with the nonlinear control method discussed
in the previous section, the linear control method discussed in this section does have drawbacks
in using 2D actuator and having large bandwidth for the feedback controller that are contrast to
the nonlinear control method, according to (7]

6 Further Developments on Modeling and Control

In the past several years there have been other significant new developments in modeling and
control for rotating stall and surge in axial compressors. It is not possible to account every one
of them in this survey paper. Thus only those works relating to the modeling and control of
compression systems will be described in this section.

As mentioned earlier, Moore-Greitzer model does not take the time lag between flow perturba-
tion across the compressor and the development of perturbation pressure rise into consideration.
This problem was investigated further in [19]. An interesting fact is that such time lag stabilizes
the high order spatial harmonic modes to a greater extent than the lower ones. As such, only
a small number of spatial harmonic modes require control action for the purpose of suppressing
rotating stall. Moreover the unsteady development of pressure loss across the compressor was
modeled [19, 26]. A Lyapunov stability procedure was also developed in [26] for the analysis of
nonlinear phenomena of rotating stall and surge that shed more lights on nonlinear control system
design of compression systems.

Another problem with Moore-Greitzer model is that it assumes incompressible flow. Thus as-
sumption holds only for low speed compressor machines, but not for high speed machines. Because

engineering interests in rotating stall and surge control are improvement for future aeroengine
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performance, it is imperative to study the high speed compressor machines. Control oriented
high-frequency turbomachinery modeling, led by Nett, is an important piece of work in this re-
search direction. The models developed in [5, 6] are both inherently high-frequency, exhibiting
expected compressor surge and rotating stall phenomena, and well suited for control design due
to their relative low complexity and accompanying uncertainty characterization. Notable research
work on compressor modeling also include 2D models for both linearized and nonlinear compress-
ible flow. In [20], the model assumes 2D linearized compressible flow in all of the inter-blade
passages and ducts, and 1D linearized compressible flow in the blade passages. Using this model,
additional modes of the compressor aerodynamic oscillation were identified in [34]. This model
was augmented with sensors and actuators in [15] and is now suitable for controller synthesis and
analysis. Compressible 2D nonlinear models are currently under development at MIT and UTRC,
including 3D nonlinear model. The removal of the incompressible flow assumption is important
because axial compressors used in aeroengines typically have high rotor speeds and large pressure
ratios.

In the past, rotating stall control and surge control were studied separately. For instance, the
two relatively successful control system design methods (nonlinear and linear ones) discussed in
the previous two sections address only rotating stall. Although surge control was not reviewed
here, interested readers will find [8] helpful. In general, rotating stall and surge are not separable
physically. Both are flow disturbances with surge as the zeroth order mode and rotating stall the
non-zeroth order modes of the spatial harmonic disturbance. It is natural to expect the feedback
controller to have the dual role of suppressing both rotating stall and surge. This research problem
has received increasing attention [13] recently.

For rotating stall and surge control, many different sensor-actuator schemes are available
[33, 21]. Recently there is an increased interest in using air injectors as actuators and pressure
transducers as sensors because of the initial work in [10]. In [11] a set of three air injectors are
equally placed on the sensor ring in front of the rotor. The basic strategy of the control algorithm
was to sense the location and magnitude of a stall cell with three equally spaced dynamic pressure
transducers and apply pulses of air to locations of decreased pressure. In [9, 15], the use of jet
actuators is more sophisticated where a circumferential array of 12 jet actuators is paced 63 mm
upstream of the compressor face with down stream static pressure as measured output. The
linearized compressible flow model developed in [20] was modified in [15] to develop a rational
transfer matrix relating the actuator input and sensor output determined by system identification
methods, and the LQG control methodology is then used to synthesize the feedback controller for
active suppression of rotating stall. Regarding the use of sensors, flow rate measurements with
hot wires are less reliable than static pressure measurements with pressure transducer. Moreover
hot wires are very delicate and difficult to survive the hostile environment such as high speed
axial compressors.

Up to present, three different types of actuators have been implemented and tested exper-




imentally: inlet guide vanes [31, 32], air injection [10, 15, 11], and bleed valves [7]. Because
inlet guide vanes involve 2D actuation and requires large torque motors, this actuation scheme is
not likely to be used in aeroengines due to the limit of weight and power supply. On the other
hand bleed valves involve only 1D actuation and thus admit considerable advantages over inlet
guide vanes. Moreover the research work in using bleed valves as actuators has been advanced
significantly for the last several years that results in bifurcation based nonlinear feedback control.
Hence the research work along this line is quite mature. A less developed control scheme is the
use of air injector as actuators where only logic type or linear control has been studied so far. For
the use of sensors, static pressure measurements have a more promising future. More and more
research work tend to employ pressure transducers [15, 11, 1] because they are less expensive and
more reliable. Thus nonlinear feedback control with jet actuators and pressure sensors will be an

important research direction in the near future.

7 Conclusion

This survey paper reviews the recent developments for rotating stall and surge control in compres-
sion systems. In spite of the significant developments in rotating stall control, there are still many
problems to be studied. The most important one is the control system design for suppressing
both rotating stall and surge for high speed compressors. We hope this survey paper will spur the
research interests from the control community in this active research field. Because of the vast

literature in this field, we apologize in advance if some of the important work was overlooked.
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